/* Copyright (C) 2015 Hans-Kristian Arntzen * * Permission is hereby granted, free of charge, * to any person obtaining a copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, * and to permit persons to whom the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // Radix 16 FFT is implemented by doing separate radix-4 FFTs in four threads, then the results are shared via shared memory, // and the final radix-16 is completed by doing radix-4 FFT again. // Radix-16 FFT can be implemented directly without shared memory, // but the register pressure would likely degrade performance significantly over just using shared. // The radix-16 FFT would normally looks like this: // cfloat a[i] = load_global(.... + i * quarter_samples); // However, we interleave these into 4 separate threads (using LocalInvocationID.z) so that every thread // gets its own FFT-4 transform. // Z == 0, (0, 4, 8, 12) // Z == 1, (1, 5, 9, 13) // Z == 2, (2, 6, 10, 14) // Z == 3, (3, 7, 11, 15) // The FFT results are written in stockham autosort fashion to shared memory. // The final FFT-4 transform is then read from shared memory with the same interleaving pattern used above. void FFT16_p1_horiz(uvec2 i) { uint quarter_samples = gl_NumWorkGroups.x * gl_WorkGroupSize.x; uint offset = i.y * quarter_samples * 16u; uint fft = gl_LocalInvocationID.x; uint block = gl_LocalInvocationID.z; uint base = get_shared_base(fft); #ifdef FFT_INPUT_TEXTURE cfloat a = load_texture(i + uvec2((block + 0u) * quarter_samples, 0u)); cfloat b = load_texture(i + uvec2((block + 4u) * quarter_samples, 0u)); cfloat c = load_texture(i + uvec2((block + 8u) * quarter_samples, 0u)); cfloat d = load_texture(i + uvec2((block + 12u) * quarter_samples, 0u)); #else cfloat a = load_global(offset + i.x + (block + 0u) * quarter_samples); cfloat b = load_global(offset + i.x + (block + 4u) * quarter_samples); cfloat c = load_global(offset + i.x + (block + 8u) * quarter_samples); cfloat d = load_global(offset + i.x + (block + 12u) * quarter_samples); #endif FFT4_p1(a, b, c, d); store_shared(a, b, c, d, block, base); load_shared(a, b, c, d, block, base); const uint p = 4u; FFT4(a, b, c, d, FFT_OUTPUT_STEP * block, p); uint k = (FFT_OUTPUT_STEP * block) & (p - 1u); uint j = ((FFT_OUTPUT_STEP * block - k) * 4u) + k; #ifndef FFT_OUTPUT_IMAGE store_global(offset + 16u * i.x + ((j + 0u * p) >> FFT_OUTPUT_SHIFT), a); store_global(offset + 16u * i.x + ((j + 1u * p) >> FFT_OUTPUT_SHIFT), c); store_global(offset + 16u * i.x + ((j + 2u * p) >> FFT_OUTPUT_SHIFT), b); store_global(offset + 16u * i.x + ((j + 3u * p) >> FFT_OUTPUT_SHIFT), d); #endif } void FFT16_horiz(uvec2 i, uint p) { uint quarter_samples = gl_NumWorkGroups.x * gl_WorkGroupSize.x; uint offset = i.y * quarter_samples * 16u; uint fft = gl_LocalInvocationID.x; uint block = gl_LocalInvocationID.z; uint base = get_shared_base(fft); cfloat a = load_global(offset + i.x + (block + 0u) * quarter_samples); cfloat b = load_global(offset + i.x + (block + 4u) * quarter_samples); cfloat c = load_global(offset + i.x + (block + 8u) * quarter_samples); cfloat d = load_global(offset + i.x + (block + 12u) * quarter_samples); FFT4(a, b, c, d, FFT_OUTPUT_STEP * i.x, p); store_shared(a, b, c, d, block, base); load_shared(a, b, c, d, block, base); uint k = (FFT_OUTPUT_STEP * i.x) & (p - 1u); uint j = ((FFT_OUTPUT_STEP * i.x - k) * 16u) + k; FFT4(a, b, c, d, k + block * p, 4u * p); #ifdef FFT_OUTPUT_IMAGE store(ivec2(j + (block + 0u) * p, i.y), a); store(ivec2(j + (block + 4u) * p, i.y), c); store(ivec2(j + (block + 8u) * p, i.y), b); store(ivec2(j + (block + 12u) * p, i.y), d); #else store_global(offset + ((j + (block + 0u) * p) >> FFT_OUTPUT_SHIFT), a); store_global(offset + ((j + (block + 4u) * p) >> FFT_OUTPUT_SHIFT), c); store_global(offset + ((j + (block + 8u) * p) >> FFT_OUTPUT_SHIFT), b); store_global(offset + ((j + (block + 12u) * p) >> FFT_OUTPUT_SHIFT), d); #endif } void FFT16_p1_vert(uvec2 i) { uvec2 quarter_samples = gl_NumWorkGroups.xy * gl_WorkGroupSize.xy; uint stride = uStride; uint y_stride = stride * quarter_samples.y; uint offset = stride * i.y; uint fft = gl_LocalInvocationID.x; uint block = gl_LocalInvocationID.z; uint base = get_shared_base(fft); #ifdef FFT_INPUT_TEXTURE cfloat a = load_texture(i + uvec2(0u, (block + 0u) * quarter_samples.y)); cfloat b = load_texture(i + uvec2(0u, (block + 4u) * quarter_samples.y)); cfloat c = load_texture(i + uvec2(0u, (block + 8u) * quarter_samples.y)); cfloat d = load_texture(i + uvec2(0u, (block + 12u) * quarter_samples.y)); #else cfloat a = load_global(offset + i.x + (block + 0u) * y_stride); cfloat b = load_global(offset + i.x + (block + 4u) * y_stride); cfloat c = load_global(offset + i.x + (block + 8u) * y_stride); cfloat d = load_global(offset + i.x + (block + 12u) * y_stride); #endif FFT4_p1(a, b, c, d); store_shared(a, b, c, d, block, base); load_shared(a, b, c, d, block, base); const uint p = 4u; FFT4(a, b, c, d, block, p); #ifndef FFT_OUTPUT_IMAGE store_global((16u * i.y + block + 0u) * stride + i.x, a); store_global((16u * i.y + block + 4u) * stride + i.x, c); store_global((16u * i.y + block + 8u) * stride + i.x, b); store_global((16u * i.y + block + 12u) * stride + i.x, d); #endif } void FFT16_vert(uvec2 i, uint p) { uvec2 quarter_samples = gl_NumWorkGroups.xy * gl_WorkGroupSize.xy; uint stride = uStride; uint y_stride = stride * quarter_samples.y; uint offset = stride * i.y; uint fft = gl_LocalInvocationID.x; uint block = gl_LocalInvocationID.z; uint base = get_shared_base(fft); cfloat a = load_global(offset + i.x + (block + 0u) * y_stride); cfloat b = load_global(offset + i.x + (block + 4u) * y_stride); cfloat c = load_global(offset + i.x + (block + 8u) * y_stride); cfloat d = load_global(offset + i.x + (block + 12u) * y_stride); FFT4(a, b, c, d, i.y, p); store_shared(a, b, c, d, block, base); load_shared(a, b, c, d, block, base); uint k = i.y & (p - 1u); uint j = ((i.y - k) * 16u) + k; FFT4(a, b, c, d, k + block * p, 4u * p); #ifdef FFT_OUTPUT_IMAGE store(ivec2(i.x, j + (block + 0u) * p), a); store(ivec2(i.x, j + (block + 4u) * p), c); store(ivec2(i.x, j + (block + 8u) * p), b); store(ivec2(i.x, j + (block + 12u) * p), d); #else store_global(stride * (j + (block + 0u) * p) + i.x, a); store_global(stride * (j + (block + 4u) * p) + i.x, c); store_global(stride * (j + (block + 8u) * p) + i.x, b); store_global(stride * (j + (block + 12u) * p) + i.x, d); #endif }